Kinetic Monte Carlo simulations of Pd deposition and island growth on MgO(100)
نویسندگان
چکیده
The deposition and ripening of Pd atoms on the MgO(100) surface are modeled using kinetic Monte Carlo simulations. The density of Pd islands is obtained by simulating the deposition of 0.1 ML in 3 min. Two sets of kinetic parameters are tested and compared with experiment over a 200–800 K temperature range. One model is based upon parameters obtained by fitting rate equations to experimental data and assuming the Pd monomer is the only diffusing species. The other is based upon transition rates obtained from density functional theory calculations which show that small Pd clusters are also mobile. In both models, oxygen vacancy defects on theMgO surface provide strong traps for Pd monomers and serve as nucleation sites for islands. Kinetic Monte Carlo simulations show that both models reproduce the experimentally observed island density versus temperature, despite large differences in the energetics and different diffusion mechanisms. The low temperature Pd island formation at defects is attributed to fast monomer diffusion to defects in the rate-equation-based model, whereas in the DFT-based model, small clusters form already on terraces and diffuse to defects. In the DFT-based model, the strong dimer and trimer binding energies at charged oxygen vacancy defects prevent island ripening below the experimentally observed onset temperature of 600 K. 2007 Elsevier B.V. All rights reserved.
منابع مشابه
Layer-by-layer Pattern Propagtion and Pulsed Laser Deposition
In this article kinetic Monte Carlo simulations for molecular beam epitaxy (MBE) and pulsed laser depositon (PLD) are compared. It will be shown that an optimal pattern conservation during MBE is achieved for a specific ratio of diffusion to deposition rate. Further on pulsed laser deposition is presented as an alternative way to control layer by layer growth. First results concerning the islan...
متن کاملEffects of deposition angle in low-temperature metal (100) epitaxial growth
The effects of oblique incidence on the surface roughness in low-temperature Cu /Cu 100 epitaxial growth are investigated via kinetic Monte Carlo simulations, which include the effects of shadowing as well as short-range and long-range attraction. While the effects of deposition angle are found to be relatively weak at 200 K, at a slightly lower temperature 160 K both the surface roughness and ...
متن کاملApproaching the low-temperature limit in nucleation and two-dimensional growth of fcc (100) metal films Ag/Ag(100)
We analyze the formation of two-dimensional Ag islands following deposition of about 0.1 ML of Ag on Ag(100) over a temperature regime ranging from classical nucleation and growth behavior to almost immobile adatoms, from 300 to 125 K. Particular emphasis is placed on the post-deposition dynamics at the lower end of the temperature range, where the saturation island density is not reached at th...
متن کاملKinetic Monte Carlo–molecular dynamics investigations of hyperthermal copper deposition on Cu„111..
Detailed kinetic Monte Carlo–molecular dynamics ~KMC-MD! simulations of hyperthermal energy ~10– 100 eV! copper homoepitaxy reveal a reentrant layer-by-layer growth mode at low temperatures ~50 K! and reasonable fluxes ~1 ML/s. where ML stands for monolayer!. This growth mode is the result of atoms with hyperthermal kinetic energies becoming inserted into islands when the impact site is near a ...
متن کاملAdatom capture by arrays of two-dimensional Ag islands on Ag(100)
We examine the capture of diffusing Ag adatoms by arrays of two-dimensional Ag islands subsequent to deposition on Ag(100) at room temperature. This is achieved by a combination of scanning tunneling microscopy experiments, kinetic Monte Carlo simulations, and diffusion equation analyses. The dependence of the capture rates on Ag-island size is shown to reflect larger island-free regions surrou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007